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An Introduction to Logic for Students of Physics and Engineering 
 

Joseph C. Kolecki 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

 
 
Summary 
 
 A physicist with an engineering background, the 
author presents a brief tutorial on logic. In his work at 
NASA and in his encounters with students, he has 
often found that a firm grounding in basic logic is 
lackingperhaps because there are so many other 
demands on people that time simply cannot be taken to 
really examine the roots of human reasoning. This 
report provides an overview of this all-too-important 
subject with the dual hope that it will suffice insofar as 
it goes and that it will spur at least some to further 
study. 
 
Introduction 
 
 When I began college in the 1970s to pursue a major 
in engineering science with a physics option, I began 
calculus in my first quarter but ran aground on the 
issue of proofs. At this stage, I had not yet studied 
logic and found that the wording of the theorems I was 
attempting to prove could be very confusing. Needless 
to say, I was often far off track in constructing my 
proof because I lacked the knowledge of their logical 
structure. 
 I later studied logic on my own and became fasci-
nated with the subject of proofs. I kept notes on the 
various topics and began to realize that if I had had 
such notes in college (and had understood them), I 
would have advanced more quickly in my study of 
mathematics. Also, since mathematics is the under-
pinning of science and engineering, such an advance-
ment would have greatly contributed to my progress in 
those courses and to my study of the logic itself, which 
forms the foundation of all modern thought. 
 Logic is applied daily in almost every situation in 
our lives. Although our thinking is seldom as formal as 
that which characterizes mathematics or the sciences, 
logic of some sort is used. In fact, the word “logic,” 
derived from Greek and Latin roots, means “to  
reason.”  When we, “Reason it out,” we are explicitly 
or implicitly using logic. 

 Logic, a formalization of language, takes basic terms 
used everyday and sharpens their definitions to 
mathematical precision. The types of statements that 
mathematical logic most often deals with are hypo-
thetical and categorical propositions. Other types of 
statements involving copulas such as should or ought 
are also dealt with in certain branches of logic but are 
not discussed in this presentation, which is written for 
the technical student pursuing a science or engineering 
degree. 
 Sometimes the engineering or science student is put 
off by the unfamiliar language of rigorous mathemati-
cal texts. This statement carries through to logic as 
well. In this presentation, I have tried to steer a middle 
ground between the strictness of mathematical rigor 
and the somewhat more intuitive language of engineer-
ing and science. I believe that it is important for  
students to master the basics of thinking, especially in 
the current academic and work environment where 
computer literacy is often stressed to the exclusion of 
language or mathematical literacy. After all, we will 
still have to think even when the power goes out. 
 No single volume can ever contain all that is to be 
said about logic. As a discipline, logic is as ancient as 
the human race. It is also as modern as the 21st cen-
tury. Millennia ago, the Greeks developed a system of 
logic that is still actively used today. In the 19th cen-
tury, European mathematicians developedor one 
could say, formalizedanother system of logic more 
suited to the needs of their rapidly developing disci-
pline. These logical systems are related, but they  
are also individual with each containing its unique 
elements. 
 There is no one system of logic. Even within the 
formal logic of modern mathematics, there exist fasci-
nating differences of meaning and method. Of all the 
systems of logic extant today, this overview deals with 
the two I deem most useful to students of science and 
engineering: hypothetical, the logic formalized by 19th 
century mathematicians, and Aristotelian (syllogistic), 
a system developed by the ancient Greeks and used 
throughout most of Western history. Hypothetical logic 
is directly applicable to mathematics, especially in the 
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development of proofs; Aristotelian logic is useful just 
about everywhere else and deserves equally serious 
study. 
 This introductory work defines significant terms, 
lists important theorems, and suggests an algebraic 
method of reasoning that is useful in developing 
proofs.  The student should not rely heavily upon 
method alone, for it does not replace genuine thought. 
However, method can often provide the beacon by 
which a sound reasoning mind can steer through rough 
waters. The student is challenged to master the topics 
presented herein and then go on to a more formal text. 
 I hope to share insights obtained mostly after gradua-
tion when I had the time to begin the long process of 
gathering up all the loose ends that college had left me 
and to start making real sense out of what I had been 
taught. As in most of my writing for students, I focus 
on basics because one needs to know the grammar and 
syntax before becoming a fluent writer. Is this too 
basic a piece to be bothered with? Is it going to be too 
simple to warrant serious time or study? The answer is 
best given by the composer Beethoven, who once 
retorted in a very different context, “It is only simple 
when you know how.”  
 This presentation is not a substitute for a formal text 
but is an introduction to a vast subject area and pre-
sents a simple approach for constructing proofs of 
logical propositions. Although the algebraic approach 
is not new, it should be very useful to the student as a 
springboard for further study. 
 
 
Basics of Hypothetical Logic  
 
Simple Propositions 
 
 A simple proposition is a statement with a simple 
subject and a simple predicate. The statement “3 is a 
numeral” is a simple proposition; “3” is the subject and 
“is a numeral” is the predicate. The function of the 
predicate is to say, or predicate, something about the 
subject. For example, 
 
 3 is a numeral. 
 3 is between 2 and 4. 
 3 is half of 6. 
 
Each predicate adds to the knowledge of the subject 
“3.” 

 In logic, propositions have properties independent of 
their specific content. The propositions “3 is a  
numeral” and “I am a man” both have the general form 
“S is a P,” where S is the subject term and P is the 
predicate term. We can represent any specific proposi-
tion of the form “S is a P” by the letter a or the letter b 
and so on. 
 In the language of logic, we assign a single letter or 
variable such as a the task of representing a simple 
proposition. Thus, if we assign a the role of represent-
ing the proposition “3 is a numeral,” this assignment is 
often called a definition: 
 

a = 3 1is a numeral b g  
 
 If there were only simple propositions, then all 
would be inordinately simple, and logic would be 
boring and useless. In reality, there are combinations of 
simple propositions, and in the combinations are found 
the beauty, complexity, and versatility of logic as a 
system for representing human thought. 
 
Compound Propositions 
 
 Any structure such as a and b, where a and b are 
both simple propositions, is a compound proposition 
with two variables. The term (in this case, “and”) 
linking the variables in a compound proposition is 
called a copula. If b represents the simple proposition 
“x is a variable,” then 
 

a b xand is a numeral and is a variable= 3 2b g  
 
 There are several types of compound propositions: 
 

1. Conjunction: “and” statement (a and b) 
2. Disjunction: “or” statement ( a or b) 
3. Implication: a implies b 
4. Equivalence: a is equivalent to b 
5. Existential, strong: (For all a, b) 
6. Existential, weak: (There exists a such that b) 

 
These compound propositions in turn may be com-
bined in various ways to form other compound propo-
sitions, such as “For all a and b,…,” or “For all a and 
b, c,” “If there exists c such that d and e, then f.” These 
will be discussed later in the section Other Forms of 
Compound Propositions. 
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Negations 
 
 If one statement is true, then there must be another 
related statement that is false. For example, if it is 
raining today, then it is false to say that it is not raining 
today. There are two statements here: 
 
 It is raining today. 
 It is not raining today. 
 
Both cannot be true at the same time because both deal 
with a state of being, a rainy day, in exactly opposite 
senses. Each statement is related to the other. The 
relation between the two statements is called negation. 
The truth of one of the statements negates the truth of 
the other. 
 Let a single letter preceded by a tilde, such as ~a, 
represent the negation of the simple proposition repre-
sented by the letter a. If a is true, ~a is false; if a is 
false, ~a is true. If a = “3 is a numeral,” then ~a = “3 is 
a non-numeral.” Obviously in this case, a is true and 
~a is false. Any compound proposition also has a 
negation; that is, the negation of (a and b) is ~(a and 
b). Using the expressions given above yields 
 

a b xand is a numeral and is a variable= 3 3b g b g  
 
~ and ( is a non numeral or

is a nonvariable (or both))

a b

x
b g

b g
= 3

4

-

 
 
Note that in the negation, the copula and has been 
replaced with the copula or. The reason is clear if one 
considers the simple grammar involved in saying that 
the proposition “a and b” is true. To say that “a and b” 
as a composite statement is true is to say that both “a” 
and “b” as individual statements are both true. Tell a 
child, “I will give you a toy and take you for ice 
cream.” Then give the toy but forget about the ice 
cream and watch what happens. Hence, the falsity of 
either statement individually negates the original com-
posite statement. 
  For the discussions that follow, note that the written 
variable a is assumed to be equivalent to “a is true,” 
and the written variable ~a (with a tilde) is assumed to 
be equivalent to “a is false.” This provision does not 
compromise the generality1 and is introduced merely 
as a convenience. 

                                                 
1Define another variable, say, s, and let s = ~a; then one has the 
case that s is false and ~s (= ~~a = a) is true.  

Defining Compound Propositions 
 
 The basis of a logical system must be a set of agreed-
upon definitions that all adhere to. These definitions 
are not absolute in that they do not apply to all times 
and places; however, they are the best and broadest 
statements that can be agreed upon at the time of their 
establishment. A set of definitions is considered a 
formal structure; a formal structure carries weight but 
is not forever unchangeable. 
 To formally define compound propositions, it must 
be stated specifically when a compound proposition 
will be considered true and when false. Since com-
pound propositions consist of simple propositions, the 
truth or falsity of any compound proposition must 
depend on the truth or falsity of its component simple 
propositions. 
 In a compound proposition of two variables a and b, 
there are only four possibilities for the truth and falsity 
of the component simple propositions; one of the  
following four possibilities must be true: 
 

 a is true, b is true 
 a is true, b is false 
 a is false, b is true 
 a is false, b is false 

 
When defining a compound proposition and its nega-
tion, each of these possibilities must appear exactly 
once. In the example just given, 
 
a b xand is a numeral and is a variableb g b g b g= 3 5  

 
~ and ( is a non numeral or

is a nonvariable (or both))

a b

x
b g

b g
= 3

6

-

 
 
The right-hand side (RHS) for ~(a and b) may also be 
written: 
 

( is a non numeral, is a variable)3 7- x b g 
 
or 
 

( is a numeral, is a nonvariable)3 8x b g 
 
or 
 

( is a non numeral, is a nonvariable)3 9- x b g 
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Note that when the definitions for (a and b) and  
~(a and b) are taken together, each possibility appears 
exactly one time: 
 
 3 is a numeral, x is a variable 
 3 is a numeral, x is a nonvariable 
 3 is a non-numeral, x is a variable 
 3 is a non-numeral, x is a nonvariable 
 
Strict Forms of Compound Propositions 
 
 The writing of definitions may now begin with the 
types of compound propositions considered to be strict 
forms. These include the following: “and” statements, 
“or” statements, implications, equivalences, and their 
negations. In the following sections, definitions for 
each of these types of propositions will be written. 
 “And” statements: conjunctions. The compound 
proposition (a and b), in which the simple propositions 
a and b are connected with the copula and, will be 
represented as (a ∧ b), where ∧ is the usual logic sym-
bol for and. The proposition is called a conjunction, 
and the variables a and b are called conjuncts. 
 
Note: Using the logic notation just introduced, the four 
truth conditions given above may be written: 
 

1. a ∧ b 
2. a ∧ ~b 
3. ~a ∧ b 
4. ~a ∧ ~b 

 
 Since (a ∧ b) is equivalent to (a ∧ b), it follows that 
the negation of (a ∧ b) must be ~(a ∧ b) is equivalent 
to the compound “or” statement: 
 

a b   ∧ ∧ ∧~ or ~a b or ~a ~ bb g b g b g b g10  
 
Again, note that each of the four truth possibilities 
appears just once in the definition of (a ∧ b) and its 
negation. 
  “Or” statements:2 disjunctions.The compound 
proposition (a or b), in which the simple propositions a 
and b are connected with the copula or, will be repre-
sented as (a ∨ b), where ∨ is the usual logic symbol  
for or. The proposition is called a disjunction, and the 

                                                 
2“Or” statements are equivalent to “Either…or…” state-
ments. The statement “a or b” is equivalent to “Either a  
or b.” 

variables a and b are called disjuncts. The two types of 
“or” statements are inclusive 
 

 

( ) is equivalent to ~

or ~a b or a b

a b a b∨ ∧

∧ ∧

 

    
b g
b g b g b g11  

 
and exclusive 
 

  ( ) is equivalent to ~ or ~ a ba b a b∨ ∧ ∧  b g b g b g12  
 
Note that the exclusive or does not include the possi-
bility (a ∧ b) whereas the inclusive or does. 
 Example of inclusive “or:” The proposition “I was 
born on the 21st of September or she was born on the 
4th of February” is an inclusive “or” statement since 
either one or both of the simple propositions it contains 
may be true. 
 Example of exclusive “or:” The proposition “Either 
the Sun will shine today or it will not” is an exclusive 
“or” statement since either one alone may be true, but 
both cannot be true together. 
 
Note: By convention, when (a ∨ b) is written, it  
will always mean the inclusive or unless otherwise 
specified. 
 
 Since the disjunction (a ∨ b) is equivalent to (a ∧ ~b) 
or (~a ∧ b) or (a ∧ b), its negation must be 
 

 ~( ) is equivalent to ~ a ~ ba b∨ ∧  b g b g13  
 
Using the definition of (a ∨ b), note that (~a ∨ ~b) is 
equivalent to (a ∧ ~b) or (~a ∧ b) or (~a ∧ ~b). But the 
RHS of this expression is identical to the definition of 
~(a ∧ b). This identity was previously used in equation 
(10). The expression 
 

~( ) is equivalent to ~a ~ba b   ∧ ∨b g b g14  
 
is one of two important laws of logic (and set theory) 
that bear the name of Augustus De Morgan  
(1806−71). These laws may have first been encoun-
tered in set theory. They apply to operations relating to 
the union and intersection of sets. Using the usual set 
notation in which ∪ is set union, ∩ is set intersection, 
and superscript C is complement, De Morgan’s laws 
state that 
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( )A B A BC C C∪ = ∩  
 

( )A B A BC C C∩ = ∪  
 
The equivalent forms in hypothetical logic are 
 

~( ) ~ ~a b a b∨ ⇔ ∧b g  
 

~( ) ~ ~a b a b∧ ⇔ ∨b g  
 
De Morgan’s laws are an important part of each of 
these respective disciplines. 
Implications.The implication is defined in terms of 
“and” and “or” statements: The implication “a implies 
b” is written a ⇒ b and is defined by 
 
( ) is equivalent to

a b ~a b ~ a ~ b
a b⇒

∧ ∨ ∧ ∨ ∧

 

b g b g b g b g15  
 
 The proposition a is called the hypothesis (antece-
dent), and the proposition b is called the conclusion 
(consequent). Note that the possibility in which a is 
true but b is false is the only possibility missing. Logi-
cians have argued over this definition but despite its 
difficulties, it remains the best available and is the 
definition used in all mathematics texts. Equivalently, 
it may be written 
 

( ) is equivalent to ~ a ~ba b⇒ ∧ b g b g16   
 
Using expression (16), the negation of the implication 
may be seen as 
 

~( ) is equivalent to a ~ba b⇒ ∧ b g b g17  
 
 The English language forms of the implication  
include 
 

1. a implies b 
2. a only if b 
3. If a, then b 
4. If a, b 
5. a is a sufficient condition for b 
6. a is sufficient for b 
7. a only on the condition that b 
8. Whenever a, b 
9. Given that a, b 
10. In case a, b 

11. b is implied by a 
12. b if a 
13. b is a necessary condition for a 
14. b is necessary for a 
15. b on the condition that a 
16. b provided that a 

 
 In mathematics and logic texts, these English forms 
are the most commonly encountered and all have  
the same meaning: a ⇒ b. For example, the algebraic 
quantity a/b, where a and b are integers, is a rational 
number only if b ≠ 0 is equivalent to the phrase “the 
quantity a/b, where a and b are integers, is a rational 
number ⇒ b ≠ 0” is equivalent to the statement “For a 
and b integers, a/b rational implies b ≠ 0” is equivalent 
to the statement “For a and b integers, if a/b is rational, 
then b ≠ 0,” and so on. 
 Equivalences.At this point, equivalence will be 
defined in terms of implication. The equivalence  
“a equivalent b” is written a ⇔ b and is equivalent to 
(a ⇒ b) ∧ (b ⇒ a). Since (a ⇒ b) is equivalent to  
(a ∧ b) ∨ (~a ∧ b) ∨ (~a ∧ ~b),  and  (b ⇒ a) is equiva-
lent to (a ∧ b) ∨ (a ∧ ~b) ∨ (~a ∧ ~b), the compound 
statement (a ⇒ b) ∧ (b ⇒ a) must be equivalent to  
(a ∧ b) or (~a ∧ ~b), the parts that the two individual 
implications have in common. Thus, 
 

( ) is equivalent to a b ~ a ~ ba b⇔ ∧ ∨ ∧   b g b g b g18  
 
 The English language forms of the equivalence 
include 
 

1. a equivalent b 
2. a is equivalent to b 
3. a and b are equivalent 
4. a implies and is implied by b 
5. a if and only if b (sometimes abbreviated a iff 

b) 
6. a is a necessary and sufficient condition for b 
7. a is necessary and sufficient for b 
8. a just in case b 

 
 The negation of an equivalence is ~(a ⇔ b) is 
equivalent to (a ∧ ~b) ∨ (~a ∧ b). 
 
Other Forms of Compound Propositions  
 
 This section discusses the compound proposition  
“a therefore b” and the existential forms “There exists 
a such that b” and “For all a, b.” (The forms “a  
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because b,” “a but b,” “a ought b,” and others are not 
dealt with because they belong to areas of logic not of 
immediate concern to mathematics and science.) 
 “Therefore” propositions.The copula therefore 
usually designates the conclusion of an argument. For 
example, if it has already been proven that some com-
pound proposition a ∧ b is true, then it may also be 
concluded that a is true and b is true individually. The 
logic shorthand for therefore is written with the  
symbol ∴∴∴∴. For example, (a ∧ b) ∴ a or (a ∧ b) ∴ b. 
Any statement, “a ∴ b” is true when the conclusion b 
is true; otherwise it is false and is written ~(a ∴ b) ⇔ 
(a ∴ ~b) ∨ (~a ∴ ~b). 
 “Existential” propositions.The copula There 
exists…such that… is called an existential quantifier. 
The existential proposition using this copula is usually 
abbreviated in logic notation as ∃a ∋ b, where ∃…∋… 
is the logic shorthand for “There exists…such that…” 
Any proposition ∃a ∋ b is true whenever there is at 
least one actual instance of the variable a for which the 
variable b is true. Only when there is demonstrably  
no such instance is ∃a ∋ b false. In such a case, it is 
written ~(∃a ∋ b) ⇔ (∀a, ~b).  
 The copula For all…, … is another (the other) exis-
tential quantifier. The existential proposition using this 
copula is usually abbreviated in logic notation as ∀a, 
b, where ∀…,… is the logic shorthand for “For 
all…,… .” Any proposition ∀a, b is true provided that 
b is true for every actual instance of a. If there is even 
one demonstrable instance of a for which b is false, 
then ∀a, b is false and is written ~(∀a, b) ⇔ ∃a ∋ ~b. 
Such a single instance is called a counterexample. 
 Table 1 summarizes the logic propositions and their 
negations presented thus far. 
 
Equivalence Laws and Arguments 
 
 Equivalence laws and arguments differ with respect 
to form. We have already defined the forms “and,” 
“or,” “implication, “equivalence,” “therefore,” “there 
exists…such that…,” and “for all…,… .” Using these 
forms, it is possible to write innumerable other logic 
statements that have the general form “P is equivalent 
to P*,” or P ⇔ P*. Such forms are called equivalence 
laws or tautologies. Many of these laws are useful in 
constructing higher order arguments and/or proofs, 
such as those in mathematics, science, or philosophy. 

 
 
 

TABLE 1.—SUMMARY OF LOGIC PROPOSITIONS AND 
THEIR NEGATIONS 

Proposition Logic notation 
a a 
a and b a ∧ b 

not (a and b) ~(a ∧ b) ⇔ (~a ∧ b) ∨ (a ∧ ~b) ∨ (~a 
∧ ~b) 

a or b (inclusive) a ∨ b ⇔ (a ∧ ~b) ∨ (~a ∧ b) ∨ (a ∧ b) 
not [a or b (inclusive)] ~(a ∨ b) ⇔ (~a ∧ ~b) 

a implies b (a ⇒ b) ⇔ (a ∧ b) ∨ (~a ∧ b) ∨ (~a ∧ 
~b) 

not (a implies b) ~(a ⇒ b) ⇔ (a ∧ ~b) 
a equivalent b (a ⇔ b) ⇔ (a ∧ b) ∨ (~a ∧ ~b) 
not (a equivalent b) ~(a ⇔ b) ⇔ (a ∧ ~b) ∨ (~a ∧ b) 
a therefore b a ∴ b 
not (a therefore b) (a ∴ ~b) ∨ (~a ∴ ~b) 
there exists a such that b ∃a ∋ b 
not (there exists a such 
that b) ∀a, ~b 

for all a, b ∀a, b 
not (for all a, b) ∃a ∋ ~b 
 
 
 Note that laws use the copula ⇔. Arguments, on the 
other hand, use the copula therefore and have the form 
(Some proposition P) therefore (some other proposi-
tion P*), or P ∴ P*. Arguments are generally proven 
directly from the laws using a method of direct or 
indirect proof. Such methods will be examined in the 
section Techniques of Proof in Mathematics, Science, 
and Philosophy. Arguments can reach any level of 
complexity. The art of mathematical proof is really the 
art of constructing consistent arguments (consistent at 
every step with the laws of logic). 
 The following section presents without proof a sam-
pling of the basic equivalence laws of logic along with 
some of the classical argument forms that appear or are 
used in more extended proofs. The laws and arguments 
are introduced first as text and then are restated in  
table 2 using the logic notation already introduced. 
Sample proofs are provided in the section Proofs of 
Selected Laws. 
 
Examples of Equivalence Laws 
 
 Laws from the ancient Greeks.Three classic laws 
of logic are derived from the ancient Greeks: 
 Law of identity:  A proposition is equivalent to itself: 
“It will rain” if and only if “it will rain.” 
 Law of the excluded middle:  Either a proposition or 
its negation (but not both) must be true; there can be no 
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TABLE 2.SUMMARY OF EQUIVALENCE LAWS AND ARGUMENTS 
Law Logic form 

Equivalence laws 
Derived from the ancient Greeks  
 Identity a ⇔ a 
 Excluded middle a ∨ ~a ⇔ U (universal truth) 
 Contradiction a ∧ ~a ⇔ ϕ (universal falsehood) 
Idempotence  
 Copula ∧ (and) a ⇔ a ∧ a 
 Copula ∨ (or) a ⇔ a ∨ a 
Commutative, associative, and distributive   
 Commutative: ∨ (or) (a ∨ b) ⇔ (b ∨ a) 
 Commutative: ∧ (and) (a ∧ b) ⇔ (b ∧ a) 
 Commutative: ⇔ (is equivalent to) (a ⇔ b) ⇔ (b ⇔ a) 
 Associative: ∨ (a ∨ b) ∨ c ⇔ a ∨ (b ∨ c) 
 Associative: ∧ (a ∧ b) ∧ c ⇔ a ∧ (b ∧ c) 
 Distributive: ∧ over ∨ a ∧ (b ∨ c) ⇔ (a ∧ b) ∨ (a ∧ c) 
 Distributive: ∨ over ∧ a ∨ (b ∧ c) ⇔ (a ∨ b) ∧ (a ∨ c) 
De Morgan’s   
 Copulas ~, ∨ ~(a ∨ b) ⇔ ~a ∧ ~b 
 Copulas ~, ∧ ~(a ∧ b) ⇔ ~a ∨ ~b 
Double negation a ⇔ ~~a 
Implication and equivalence, and their negations  
 Implication: ⇒ (a ⇒ b) ⇔ [(a ∧ b) ∨ (~a ∧ b) ∨ (~a ∧ ~b)]  
 Negation of an implication  ~(a ⇒ b) ⇔ (a ∧ ~b) 
 Equivalence: ⇔ (a ⇔ b) ⇔ [(a ∧ b) ∨ (~a ∧ ~b)] 
 Negation of an equivalence ~(a ⇔ b) ⇔ [(a ∧ ~b) ∨ (~a ∧ b)] 
Contraposition, exportation, importation, and absorption  
 Contraposition in implication (a ⇒ b) ⇔ (~b ⇒ ~a) 
 Contraposition in equivalence (a ⇔ b) ⇔ (~b ⇔ ~a) 
 Exportation/importation:  ⇒/⇐ [(a ∧ b) ⇒ c] ⇔ [a ⇒ (b ⇒ c)] 
 Absorption (a ⇒ b) ⇔ [ a ⇒ (a ∧ b)]  

Arguments 
Pierce’s law [(a ⇒ b) ⇒ a] ∴ a 
Syllogisms and other forms  
 Hypothetical syllogism (a ⇒ b) ∧ (b ⇒ c) ∴ (a ⇒ c) 
 Modus tollendo ponens (disjunctive syllogism) (a ∨ b) ∧ ~a ∴ b 
 Modus ponendo ponens (affirming the antecedent or rule 
 of detachment) (a ⇒ b) ∧ a ∴ b 

 Modus tollendo tollens (denying the consequent) (a ⇒ b) ∧ ~b ∴ ~a 
 Modus ponendo tollens ~(a ∧ b) ∧ a ∴ ~b 
 Equivalence ponens (a ⇔ b) ∧ a ∴ b (or (a ⇔ b) ∧ b ∴ a) 
 Equivalence tollens (a ⇔ b) ∧ ~a ∴ ~b (or (a ⇔ b) ∧ ~b ∴ ~a) 
Dilemmas  
 Simple constructive  [(a ⇒ b) ∧ (c ⇒ b)] ∧ (a ∨ c) ∴ b 
 Complex constructive [(a ⇒ b) ∧ (c ⇒ d)] ∧ (a ∨ c) ∴ b ∨ d 
 Simple destructive  [(a ⇒ b) ∧ (a ⇒ c)] ∧ (~b ∨ ~c) ∴ ~a 
 Complex destructive [(a ⇒ b) ∧ (c ⇒ d)] ∧ (~b ∨ ~d) ∴ ~a ∨ ~c 
 Special  (a ⇒ b) ∧ (~a ⇒ b) ∴ b 
Other miscellaneous arguments  
 Law of simplification (a ∧ b ∴ a) or (a ∧ b ∴ b) 
 Law of absurdity (also impossible antecedent) [a ⇒ (b ∧ ~b)] ∴ ~a 
 Law of addition a ∴ a ∨ b 
 Law of the true consequent b ∴ (a ⇒ b) 
 Law of the false antecedent (Law of Duns Scotus) a ∴ (~a ⇒ b) 
 Conjunction introduction a, b ∴ (a ∧ b) 
 Disjunction introduction a ∴ (a ∨ b) 
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middle ground:3 Either “It will rain” or “It will not 
rain.” 
 Law of contradiction:  Both a proposition and its 
negation cannot be true together: “It will rain” and “It 
will not rain” at the same time at the same spot is 
absurd.  
 These laws are fundamental to all logic and are 
used in most arguments and proofs. 
 Idempotence laws. The truth of a proposition a is 
equivalent to the truth of a and a or of a or a or both: 
“It will rain.” Therefore, “It will rain and/or it will 
rain.” 
 Commutative, associative, and distributive laws. 
Variables in logic behave somewhat analogously to 
variables in algebra and have similar basic laws: 
 Commutative:  The order of variables in a conjunc-
tion, a disjunction, or an equivalence does not affect 
the truth of the respective propositions: (a) “It will be 
cloudy and it will rain” if and only if “it will rain and 
it will be cloudy.” (b) “It will be cloudy or it will 
rain” if and only if “it will rain or it will be cloudy.” 
 Associative:  In a proposition of more than two 
variables, the variables may be grouped in pairs with-
out reference to position or order and without affect-
ing the truth of the proposition: (a) “It will rain, Jack 
will get wet, and Jill will stay in” if and only if “Jack 
will get wet, Jill will stay in, and it will rain.” (b) “It 
will rain or Jack will stay dry or Jill will come out” if 
and only if “Jack will stay dry or Jill will come out or 
it will rain.” 
 Distributive:  The variables in a compound proposi-
tion are permitted to be distributed over the copulas 
and and or without affecting the truth of the proposi-
tion: (a) “It will rain and Jack will get wet or Jill will 
stay in” if and only if “it will rain and Jack will get 
wet” or “It will rain and Jill will stay in.” (b) “It will 
rain or Jack will stay dry and Jill will come out” if 

                                                 
3In the early 20th century, the mathematician Kurt von Gödel 
(1906−78) demonstrated the existence of a third class of proposi-
tions, typically self-referential, the truth or falsity of which 
implied their own falsity or truth. He called such statements 
undecidable. Thus, if one were to write, “This statement is false,” 
one would first note that the statement refers to itself and that it is 
a negative statement. Finally, one would note that its truth would 
imply its falsity and its falsity would imply its truth. By showing 
that such statements must always occur in logical systems, Gödel 
thereby shattered the hope of ever finding a logically consistent 
scheme of mathematics (i.e., one in which such statements could 
never occur). The finding of such a scheme was exactly the 
programme undertaken by Russell, Whitehead, and others in the 
late 19th and early 20th centuries. 

and only if “it will rain or Jack will stay dry” and “It 
will rain or Jill will come out.” 
 De Morgan’s laws.These are two of the most 
important laws of logic and of set theory. In logic, 
they take the form of negations of conjunctions and 
disjunctions and might be regarded as distributive 
laws for the negator  ~. When the negator is distrib-
uted over the individual variables, the copula is 
changed either from ∧ → ∨ or from ∨ → ∧, depend-
ing on whether the original proposition was conjunc-
tive or disjunctive: (a) Not “to run and get wet” is 
equivalent to “not to run” or “not to get wet” or both. 
(b) Not “to run or get wet” is equivalent to “not to 
run” and “not to get wet.” 
 Double negation law.The negation of a negated 
proposition results in the original proposition before 
negation. This law is akin to the law of double multi-
plication by –1 in basic algebra (1 = −(−1)): Not “not 
to run” is equivalent to “to run.” 
 Implication and equivalence laws and their nega-
tions.These laws have already been discussed in 
the section Strict Forms of Compound Propositions.  
 Contraposition, exportation, importation, and 
absorption laws.These laws involve statements 
such as (a ⇒ b), ~(a ⇒ b), (a ⇔ b), ~ (a ⇔ b), which 
we have already examined. 
 Law of contraposition for implications:  A given 
implication is equivalent to another implication in 
which the variables are both negated and their order 
is reversed: “If the front comes through, it will rain” 
is equivalent to “If it does not rain, the front has not 
come through.” 
 Law of contraposition for equivalences:  A given 
equivalence is equivalent to another equivalence in 
which the variables are both negated: “It will rain if 
and only if the front comes through” is equivalent to 
“It will not rain if and only if the front does not come 
through.” 
 Law of exportation/importation:  An implication 
whose antecedent is a conjunction is equivalent to 
another implication whose antecedent is one of the 
conjuncts and whose consequent is another implica-
tion in which the antecedent is the other conjunct and 
the consequent is the original consequent: When read 
from left to right, the law is known as “exportation” 
and when read from right to left, “importation.” “Rain 
and thunder imply a storm” is equivalent to “Rain 
implies that thunder implies a storm” is also equiva-
lent to “Thunder implies that rain implies a storm.” 
 Law of absorption:  Any implication is equivalent 
to another implication whose antecedent is the same 
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and whose consequent is the conjunction of the ante-
cedent and the consequent: “Rain implies a storm” if 
and only if “rain implies rain and a storm.” 
 
Arguments 
 
 Pierce’s law.If the truth of an implication implies 
the truth of its own antecedent, the antecedent must 
be true: “Rain implies a ruined picnic” implies “rain” 
therefore “rain.” (A cynic’s logic) 
 Syllogisms and other forms.Syllogisms are 
ancient forms dating back to the Greek philosopher 
Aristotle. Two types are considered:  
 (1) Hypothetical:  Two implications have a com-
mon (or middle) term, which is the consequent of one 
implication (the first) and the antecedent of the other 
(the second). The conclusion is that the antecedent of 
the first implication implies the consequent of the 
second: “If thunder implies rain.” and “Rain implies 
no picnic.” then “Thunder implies no picnic.” 
 (2) Disjunctive:  This form consists of a disjunction 
and the denial (negation) of one of the disjuncts. The 
conclusion is the other disjunct: “It will rain” or “we 
will have a picnic.” “It will not rain,” therefore “we 
will have a picnic.” 
This syllogism is also referred to as modus tollendo 
ponens, the “mode of taking and putting.” The  
remaining arguments use these same Latin words as 
their descriptors. 
 Affirming the antecedent or rule of detachment 
(modus ponendo ponens):  This form consists of an 
implication and the confirmation of the antecedent. 
The conclusion is the consequent: “If it rains, the 
picnic will be cancelled.” “It is raining,” therefore 
“the picnic will be cancelled.” 
 Denying the consequent (modus tollendo tollens):  
This form consists of an implication and the negation 
of the consequent. The conclusion is the negation of 
the antecedent: “If it rains, the picnic will be can-
celled.” “The picnic is not cancelled,” therefore “it is 
not raining.” 
 Negation of a conjunction and affirmation of one of 
the conjuncts (modus ponendo tollens):  The conclu-
sion is the negation of the other conjunct: “It is not 
true that it will rain and the picnic will be held any-
way.” “The picnic will be held,” therefore “it will not 
rain.” (or “It will rain,” therefore “the picnic will not 
be held.”) 
 Equivalence ponens:  This form consists of an 
equivalence of two propositions and the affirmation 
of one of the propositions. The conclusion is the other 

proposition: “The picnic will be held” if and only if 
“it does not rain.” “It does not rain,” therefore “the 
picnic will be held.” 
 Equivalence tollens: This form consists of an 
equivalence of two propositions and the negation of 
one of the propositions. The conclusion is the nega-
tion of other proposition: “The picnic will be held” if 
and only if “it does not rain.” “It rains,” therefore “the 
picnic will not be held.” 
 Dilemmas.Dilemmas consist of two compound 
propositions (lemmas) and a conclusion: 
 Simple constructive:  Two implications have differ-
ent antecedents but have a common consequent. If 
either antecedent (or both) is true, then the conse-
quent must be true: “Clouds imply rain.” and “Thun-
der implies rain.” “There are clouds.” or “There is 
thunder,” therefore “it will rain.” 
 Complex constructive:  Two implications have 
different antecedents and different consequents. If 
either antecedent (or both) is true, then one (or both) 
of the consequents must be true: “Clouds imply rain.” 
and “High winds imply damage.” “There are clouds.” 
or “There is high wind,” therefore “it will rain” or 
“there will be damage.” 
 Simple destructive:  Two implications have the 
same antecedent and different consequents. If either 
consequent (or both) is false, then the antecedent 
must be false: “Clouds imply rain.” and “Clouds 
imply high wind.” “There is no rain.” or “There is no 
high wind,” therefore “there are no clouds.” 
 Complex destructive:  Two implications have dif-
ferent antecedents and different consequents. If either 
consequent (or both) is false, then one (or both) of the 
antecedents must be false: “Clouds imply rain.” and 
“High winds imply damage.” “There is no rain.” or 
“There is no damage,” therefore “there are no clouds” 
or “there are no high winds.” 
 Special:  Two implications have the same conse-
quent and antecedents that are negations, one of the 
other. The conclusion is the common consequent: 
“We will have a party whether it rains or shines.” 
Therefore, “we will have a party.” 
  
Question for the reader: Can you write out examples 
for the category “Other miscellaneous arguments” in  
table 2? 
 
Algebraic Representation and Proofs of Laws 
 
 Several methods of proof for the laws of hypotheti-
cal logic are available in any standard text. Many 
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laws are amenable to proof using a modified type of 
algebra, a “logic algebra,” which will be introduced 
herein as it provides a direct and intuitive method for 
approaching the laws and their proofs. However, the 
student is encouraged to learn about other and more 
advanced techniques. 
 All the equivalence laws given in table 2 may also 
be represented as algebraic forms when the following 
substitutions are made: 
 

∧←⋅ 19b g  
 

∨← + 20b g  
 

⇔← = 21b g  
 
 These substitutions, along with some hypotheses 
for a “logic algebra” (as opposed to a number alge-
bra), enable ready proofs of the logic laws using 
means easily accessible to anyone who has learned 
basic algebra. Since all the equivalence laws involve 
propositions that can be reduced to compound “and” 
and “or” statements, one need only focus on the 
behavior of • and +.  
 
(NB: Substitute the symbol = whenever the symbol 
⇔ occurs; the symbol = has the same meaning that it 
has in basic arithmetic.) 
 
 The logic algebra for compound “and” and  
“or” propositions is defined in table 3 by the nine 
hypotheses: 
 Using the definition of implication (a ⇒ b) ⇔  
(a ∧ b) ∨ (~a ∧ b) ∨ (~a ∧ ~b) and substituting,  
we may write its algebraic form as 
 

a b a b a b a bb b g b g b g b g⇒ = + +⋅ ⋅ ⋅) ~ ~ ~ 22  
 
Similarly, the negation of the implication is 
 

~ ) ~a b a bb b g b g⇒ = ⋅ 23  
 
Proofs of Selected Laws 
 
 Algebraic representation is now used to prove some 
basic laws of hypothetical logic presented in the 
previous section and in table 2. 
 Example 1: identity.Begin with the law of iden-
tity a ⇔ a, which appears almost self-evident. Its 
algebraic form is a = a. Q.E.D. 

 Example 2:  distributive: ∨∨∨∨ over ∧∧∧∧: a ∨∨∨∨ (b ∧∧∧∧ c) ⇔⇔⇔⇔  
(a ∨∨∨∨ b) ∧∧∧∧ (a ∨∨∨∨ c).Begin with the algebraic form for 
the left-hand side (LHS) of this law (a ∨ (b ∧ c)) and 
rewrite it as an algebraic form: 
 

a b c a b c∨ ∧ = + ⋅b g b g24  
 
 Now, invoke the disjunction introduction on b and 
c to write (b ∴ b + a) and (c ∴ c + a). Also, invoke 
the idempotent for • on a to write a = a • a. Substitute 
for a, b, and c on the RHS and find 
 

a b c a a b a c a
a a b c b a a c a a
a a b a c a c b
a a b c a b
a c a b

∨ ∧ = + + +

= + + + +
= + + +

= + + +

= + +

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅

⋅

b g b g b g

b g b g
b g b g b g25  

 
By reverse substitution, conclude that a ∨ (b ∧ c) ⇔  
(a + c) • (a + b). Q.E.D. 
 
(NB: If variables in basic algebra were being treated, 
what has just been shown would make no sense be-
cause it would have proven that a + b • c = (a + c) • (a 
+ b), which is certainly not true (in basic algebra). 
Remember that logic algebra is being used and that 
the initial hypotheses and treatment of variables are 
different from those in basic algebra.) 
 
 Example 3: extended De Morgan’s: ~(a + b + c) 
⇔ ~a • ~b • ~c.Begin by letting u = a + b so that  
 

~ ~a b c u c+ + = +b g b g b g26  
 
Apply De Morgan’s law to the LHS to obtain 
 

~ ~ ~u c u c+ = ⋅b g b g27  
 
Finally, in the LHS, replace u with a + b, apply De 
Morgan’s law again, and the desired result is ob-
tained. Q.E.D. 
 Similarly, it may be shown that ~(a • b • c) ⇔ ~a + 
~b + ~c. 
 Example 4:  equivalence (a ⇔⇔⇔⇔ b) = (a • b) + (~a • 
~b).The algebraic form for implication may be 
used to show that (a ⇔ b) is equivalent to (a ∧ b) ∨ 
(~a ∧ ~b). Recall that originally by definition (a ⇔ b) 
is 
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TABLE 3.NINE HYPOTHESES FOR COMPOUND PROPOSITIONS 
Rule Logic form Algebraic form 

Idempotent law for • a ∧ a ⇔ a a • a = a 
Idempotent law for + a ∨ a ⇔ a a + a = a 
Commutative law for • a ∧ b ⇔ b ∧ a a • b = b • a 
Commutative law for + a ∨ b ⇔ b ∨ a a + b = b + a 
Associative law for • (a ∧ b) ∧ c ⇔ a ∧ (b ∧ c) (a • b) • c = a • (b • c) 
Associative law for + (a ∨ b) ∨ c ⇔ a ∨ (b ∨ c) (a + b) + c = a + (b + c) 
Distributive law: • over + a ∧ (b ∨ c) ⇔ (a ∧ b) ∨ (a ∧ c) a • (b + c) = (a • b) + (a • c) 
Universal falsehood a ∧ ~a ⇔ aϕ a • ~a = 0 
Universal truth a ∨ ~a ⇔ bU a + ~a = 1 
aϕ, null or empty set. 
bU, universe of discourse. 

 
 
 
 
equivalent to (a ⇒ b) ∧ (b ⇒ a). By writing out the 
algebraic forms for each of the implications and using 
rules 1 to 9, we are able to arrive at the law of equiva-
lence: (a ⇔ b) = (a • b) + (~a • ~b). 
 Begin by writing 
 
a b b a a b a b a b

b a b a b a

b b g b g b g b g
b g b g b g b g

⇒ ∧ ⇒ = + +

+ +

⋅ ⋅ ⋅
⋅ ⋅ ⋅×

) ~ ~ ~

~ ~ ~ 28  
 
Next, manipulate the RHS using the methods of 
algebra: 
 

RHS ~

~ ~ ~

~ ~ ~ ~ ~

~ ~ ~ ~ ~

~ ~ ~ ~

= +

+ +

+ +

+ +

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

a b b a a b b a

a b b a a b b a

a b b a a b b a

a b b a a b b a

a b b a

b g b g b g b g
b g b g b g b g
b g b g b g b g
b g b g b g b g

b g b g b g

 

 

 

 29  
 
Then, rearrange terms and use the ninth hypothesis 
from table 3: 
 

RHS ~

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~

= +

+ + +

+ + +

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

a a b b a a b b

a a b b a a b b a a b b

a b b a a b b a a b

a a b b

b g b g
b g b g b g
b g b g b g

b g b g

 

 

 30  
 
RHS

~ ~ ~ ~

= + + + + +

+ + +
⋅ ⋅ ⋅

⋅ ⋅ ⋅
a a b b

a a b b
b g

b g b g
0 0 0 0 0

0 0 31  
 
 

 
RHS ~ ~= +⋅ ⋅a b a bb g b g b g32  

 
By reverse substitution, we can conclude that (a ⇔ b) 
= (a • b) + (~a • ~b). Q.E.D. 
 Example 5:  contraposition: ⇒⇒⇒⇒: (a ⇒⇒⇒⇒ b) ⇔⇔⇔⇔ (~b ⇒⇒⇒⇒ 
~a).Begin by writing the algebraic form of the 
implication a ⇒ b: 
 

a b a b a b a b⇒ = + +⋅ ⋅ ⋅b g b g b g b g b g~ ~ ~ 33  
 
Then use the law of double negation to replace b with 
~~b wherever b occurs: 
 
a b a b a b a b⇒ = + +⋅ ⋅ ⋅b g b g b g b g b g~~ ~ ~~ ~ ~~~ 34  

 
Now, observe that ~~~b = ~b: 
 
a b a b a b a b⇒ = + +⋅ ⋅ ⋅b g b g b g b g b g~~ ~ ~~ ~ ~ 35  

 
An examination of the RHS of this last expression 
reveals that it is identical to the algebraic statement of 
the implication ~b ⇒ ~a, so that 
 

a b b a⇒ = ⇒b g b g b g~ ~ 36  
 
from which we obtain the law of the contrapositive:  
(a ⇒ b) ⇔ (~b ⇒ ~a). Q.E.D. 
 Example 6: Pierce’s: (a ⇒⇒⇒⇒ b) ⇒⇒⇒⇒ a ∴∴∴∴ a.Begin by 
writing 
 

a b a b a b a b⇒ = + +⋅ ⋅ ⋅b g b g b g~ ~ ~ 37  
 
so that 
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a b a a b a b a b a

a b a b a b a

a b a b a b a

⇒ ⇒ = + +

+ + +

+ + +

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

b g b g
b g
b g b g

~ ~ ~

~ ~ ~ ~

~ ~ ~ ~ ~

                      

 38  
 
Now, observe that ~(a • b + ~a • b + ~a • ~b) = a • ~b. 
There are three means of demonstrating this equiva-
lence (any one is sufficient): 
 

1.  Cite either the rule for negating an implication 
or the rule for a compound proposition having two 
variables and its negation, which states that each of 
the four truth possibilities must appear exactly once. 

2.  Note that the expression (a • b + ~a • b + ~a • 
~b) is also the definition for a ⇒ b. The negation of  
a ⇒ b is equivalent to a • ~b. Cite this equivalence 
directly. 

3.  Use algebraic means,4 an exercise the reader 
should try before checking the footnote. Thus, 
 

a b a a b a b a b a

a b a a b a

a b a b
a b b

a

⇒ ⇒ = + +

+ +

= +

= +

=

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅
⋅

b g b g
b g b g

b g
b g

~ ~ ~

~ ~ ~

~
~
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from which we conclude a. Q.E.D. 
 
Techniques of Proof in Mathematics, Science, and 
Philosophy 
 
 In this section, it is necessary to suspend the earlier 
proviso that a variable a (without a tilde) is true and a 
variable ~a (with a tilde) is false.5 
 There are three major approaches to proving a 
proposition in mathematics, science, or philosophy: 
direct proofs, indirect proofs, and proofs by induction. 
For any given proposition, the method must be care-
fully chosen. The wrong choice can lead to frustration,  

                                                 
4Using the extended De Morgan’s law,  ~(a • b + ~a • b + ~a • 
~b) = [~(a • b) • ~(~a • b) • ~(~a • ~b)] = [(~a + ~b) • (a + ~b) • 
(a + b)] = [ (~a • a + ~a • ~b + ~b • a + ~b) • (a + b)] = [ (~a • a) 
+ (~a • a • ~b) + (~b • a) + (a • ~b) + (~a • a • b) + (~a • ~b • b) + 
(~b • b • a) + (b • ~b)] = (a • ~b). Q.E.D. 
5This suspension is necessary because the variables a and/or ~a 
often must be considered as being individually true or false, so 
that herein the more general provision cannot strictly hold. 

 
whereas the correct choice may lead to a quick  
solution. 
 Direct.Suppose that we are given the truth of a 
proposition a and are asked to prove the truth of a 
proposition b. In the method of direct proof, the truth 
of a is assumed (taken without proof or argument) and 
the truth of b must be demonstrated. If the proposition 
b is a conjunct or a disjunct, proceed as follows: 
  
 Given S, ∴ a ∧ b: Assume the truth of S and reason 
from this assumption to the truth of a ∧ b. We might 
reason individually first to the truth of a and then to 
the truth of b, but once they have been shown to be 
true individually, invoke the law of conjunction in-
troduction to conclude the truth of the compound 
proposition a ∧ b. 
 Given S, ∴ a ∨ b: It is sufficient to assume the truth 
of S and to reason from this assumption the truth of 
either a or b but not necessarily both. 
 
To prove propositions of the form 
 
 a ⇒ b: Assume the truth of a and reason to the 
truth of b. Or, invoke the law of the contrapositive 
and write the equivalent proposition ~b ⇒ ~a,  
assume the truth of ~b and reason to the truth of ~a. 
 a ⇔ b: Prove in two separate steps the implications 
a ⇒ b and b ⇒ a. 
 a ∴ b: Assume the truth of a and reason to the truth 
of b. 
 ∃a ∋ b: It is sufficient to find one true instance of a 
for which b is also true. 
 ∀a, b: It is necessary to show that the truth of b is 
ensured regardless of the choice of any true instance 
of a. This method is often very difficult, and the 
indirect method of proof by counterexample is used 
instead (see the next section). 
 
 Indirect (reductio ad absurdum).The argument 
reductio ad absurdum (reduction to absurdity) is based 
on the Greek law of the excluded middle; that is, either 
a proposition or its negation must be true. Suppose that 
one is given the truth of a proposition a and is asked to 
prove the truth of a proposition b. It is known that b is 
either true or false; that is, either b is true or ~b is true, 
but it is not known which. In the method of indirect 
proof, assume the truth of a and of ~b and reason to a 
contradiction of the form p ∧ ~p. Recall that p ∧ ~p is 
a universal falsehood. Then, since the choice of ~b 
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leads to a universal falsehood, ~b must be false, and b 
must be true. Thus, to prove propositions of the form 
 
 Given S, ∴ a ∧ b: Assume the truth of S and the 
truth of ~(a ∧ b). Since ~(a ∧ b) ⇔ ~a ∨ ~b by De 
Morgan’s law for ∧, we may also assume the truth of S 
and either ~a or ~b individually and show that a con-
tradiction follows. Since  ~(a ∧ b) leads to a contradic-
tion, it follows that a ∧ b must be true. 
 Given S ∴ a ∨ b: Assume the truth of S and the truth 
of ~(a ∨ b). Since ~(a ∨ b) ⇔ ~a ∧ ~b by De Mor-
gan’s law for ∨, we may assume the truth of S and the 
truth of the compound proposition ~a ∧ ~b and show 
that a contradiction follows. Since ~(a ∨ b) leads to a 
contradiction, it follows that a ∨ b must be true. 
 Given: a ⇒ b:  Assume the truth of ~(a ⇒ b) ⇔ (a 
⇒ ~b) ⇔ (a ∧ ~b) and show that a contradiction fol-
lows. Since ~(a ⇒ b) leads to a contradiction, it fol-
lows that a ⇒ b must be true. 
 Given: a ⇔ b:  Assume the truth of 
 

~ ) ~ ~

~ ~

a b a b a b

a b a b

b b g b g
b g b g b g

⇔ ⇔ ⇔ ∨ ⇔

⇔ ∧ ∨ ∧ 40  
 
and show that a contradiction follows. Since ~(a ⇔ b) 
leads to a contradiction, it follows that a ⇔ b must be 
true. 
 Given: a ∴ b: Assume the truth of a and of ~b and 
show that a contradiction follows. Since ~(a ∴ b) 
leads to a contradiction, it follows that a ∴ b must be 
true. 
 Given: ∃a ∋ b: Assume the truth of ∀a ~b and show 
that a contradiction follows. Since ~(∃a ∋ b) leads to a 
contradiction, it follows that ∃a ∋ b must be true. 
 Given: ∀a, b:  Assume that ∃a ∋ ~b (proof by coun-
terexample) and show that a contradiction follows. 
Since ~(∀a, b) leads to a contradiction, it follows that 
∀a, b must be true. 
 Inductive.Suppose that we wish to prove an infi-
nite sequence of related propositions, a0, a1, a2, a3, …, 
a∞. Each proposition cannot be proven individually 
because there is an infinite number of them. So we 
must resort to proof by induction. The two steps to 
complete an inductive proof are 
 

1.  Prove the truth of a0 and a1. 
2.  Show that the truth of any an implies the truth 

of an +1; that is, an ⇒ an+1. 

Basics of Aristotelian Logic 
 
Mediate Versus Immediate Inference 
  
 Aristotelian logic uses arguments called syllogisms. 
This section introduces syllogisms and the concepts 
involving their use and construction. Hypothetical 
logic, discussed in the first section of this report, was 
mainly developed during the 19th century for use in 
mathematics because during this time developments in 
mathematics increased more than they had in previous 
centuries. Therefore, the logic of mathematics had to 
be formalized in an agreed-upon system. 
 Aristotelian logic is used in the news, the courtroom, 
and other nonmathematical disciplines. Because Aris-
totle was concerned with a different set of problems 
than those of the 19th century mathematicians, he 
developed his logic accordingly. Thus, we will dis-
cover that many of the rules developed for hypothetical 
logic were also developed for Aristotelian logic. 
 Let us begin with concept of inference as it relates to 
argument. To infer implies that we have a subject we 
wish to speak about and a predicate we wish to apply 
to the subject. When we infer something, we draw a 
conclusion based on given statements that we take to 
be true. For example, given the statements 
 
 All Greeks are philosophers. 
 Aristotle is a Greek. 
 
we can infer that 
 
 Aristotle is a philosopher. 
 
In the first section, Basics of Hypothetical Logic, 
simple propositions were presented. Note that in the 
foregoing statements, there are three simple proposi-
tions, two given and one inferred. Each proposition has 
a subject and a predicate. The subject is what we are 
talking about; the predicate is what we have to say 
about the subject.  
 The proposition “Rover is a dog” has the subject 
“Rover” and the predicate “is a dog.” Changing the 
predicate to “is a giraffe” would completely change the 
meaning of the proposition. However, changing the 
subject to “Spot” would not alter the original proposi-
tion. That Spot is a dog does not affect the status of 
Rover at all. 
 The three propositions in the previous example, “All 
Greeks are philosophers,” “Aristotle is a Greek,” and  
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TABLE 4.THE FOUR FIGURES 

Propositiona Figure 
 First Second Third Fourth 

Premises MP and SM PM and SM MP and MS PM and MS 

Conclusion Therefore SP Therefore SP Therefore SP Therefore SP 
aS, subject term; P, predicate term; M, middle term. 

 
 
“[Therefore] Aristotle is a philosopher,” taken together  
form a type of argument called a syllogism. Note that 
the terms “Aristotle” and “philosopher” appear in the 
conclusion, “[Therefore] Aristotle is a philosopher,” 
but that the term “Greek” does not.  The term “Greek” 
is part of the argument but acts only as a mediator and 
has no other role. 
 We may restate our argument in the notation of 
hypothetical logic as 
 
 Greek ⇒ philosopher 
 Aristotle ⇒ Greek 
 ∴Aristotle ⇒ philosopher 
 
Each of the three propositions is shown as an implica-
tion, and each implication makes an immediate state-
ment (i.e., a statement without a term that acts as a 
mediator). Only when the three propositions are taken 
together does the mediatory role of the term “Greek” 
appear. 
 To summarize based on the foregoing discussion, 
we may define two types of inference:  
 

1. Mediateinference with a middle step 
2. Immediateinference without a middle step 

 
Note that the Latin prefix im means “without.” In 
immediate inference, we reason directly from a  
hypothesis to a conclusion. If, instead of “Greek ⇒ 
philosopher,” we write “x + 1 = 0 ⇒ x = −1,” the role 
of hypothetical implication as inference becomes 
clear. The proof of “x + 1 = 0 ⇒ x = −1” is obvious to 
one who has had first-year algebra. 
 In mediate inference, we reason from antecedent 
propositions using a middle term to a concluding 
proposition in which the middle term is absent. 
 Syllogistic logic is mediate inference. There are 
three terms: the subject S, predicate P, and the medi-
ate or middle M. The point of the syllogism is to 
prove that the predicate term applies to the subject 

term; that is, the predicate tells (or predicates) some-
thing about the subject.  
 The conclusion of a syllogism always has the form 
SP, the subject followed by the predicate. For clarity, 
here is an illustration of the symbol SP. Let us say 
that “Aristotle” is the subject and “is a philosopher” 
is the predicate. Then, the symbol SP means “Aris-
totle is a philosopher.” In shorthand, 
  
 S = Aristotle 
 P = is a philosopher 
 SP = Aristotle is a philosopher 
 
 In a syllogism, the middle term occurs once in each 
of the antecedent arguments. In this case, the middle 
term occurs once as a subject (“All Greeks are phi-
losophers”) and once as a predicate (“Aristotle is a 
Greek”).  The four ways the middle term can occur or 
“be distributed” in a syllogism are as 
 

1. Subject and subject 
2. Subject and predicate (example just given) 
3. Predicate and subject 
4. Predicate and predicate 

 
Each of these distributions is called a figure and there 
are four. A syllogism is characterized by the type of 
figure it employs. For easy reference, table 4 presents 
the four figures. 
  
Definition by Genus and Species 
 
 When hypothetical logic was introduced in the first 
section of this report, we spoke of making definitions. 
Recall that we had to define the terms that would be 
used to build the logical system. Aristotle was very 
concerned with definition and wrote a great deal 
about it. The following summarizes what he had to 
say. 
 Definitions are the starting point of most philoso-
phical and mathematical arguments. To construct a 
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definition, we first have to select a “universe of dis-
course” in which the argument can take place. Sup-
pose that we are talking about your new golden 
retriever. The universe of discourse might be the set 
of all dogs. Within the set of all dogs we may then 
speak of the set of all retrievers, and within the set of 
all retrievers, the set of all golden retrievers, and 
within this set, your particular retriever. 
 Each paring down requires recognition of both 
general and specific characteristics. Aristotle called 
these general and specific characteristics genus and 
species, respectively. An Aristotelian definition is a 
proposition (or set of propositions) that involves the 
concepts of genus and species. In defining the term 
“tree,” we recognize the various species of trees as 
oak, maple, pine, and so on. In defining a maple tree, 
on the other hand, we recognize the various species as 
red, silver, or Japanese. 
 A genus is a class of a certain kind that can be 
partitioned into smaller equivalence subclasses of 
species. A class is a set of objects having some ele-
ment or elements in common, and it may generally be 
partitioned into species by further dividing among 
these common elements. The set union of all the 
species in a class comprises the class itself. The set 
intersection of any two species is the null set. 
 Example of null set.All trees have trunks, roots, 
and foliage. The set of all trees is a class (genus). 
Foliage may be subdivided into leaves and needles; 
hence, the class trees may be partitioned into the 
subclasses (species): trees with leaves and trees with 
needles. The set union of these subclasses is the 
original class. Their intersection is the null set. 
 Aristotle’s definition of a term by genus and spe-
cies first specifies a characteristic belonging to the 
genus of the term being defined.  
 A second characteristic, the differentia, is then 
added to indicate the species. The characteristic sup-
plied by the differentia distinguishes the term being 
defined from all other terms belonging to the same 
genus. 
 Example of differentia.The genus is again trees. 
The differentia are needles and leaves. 
 The genus is predicated of the species but not con-
versely. For example, we say, “A tree has leaves,” not 
“Leaves has a tree.” The species term contains more 
information than the genus term.  

Propositions 
 
 In the first section, Basics of Hypothetical Logic, 
we encountered the concept of proposition. Aristote-
lian logic is a logic of propositions. In general, a 
proposition is a statement that proposes an idea. More 
formally, a proposition  
 

1. Is a specific type of statement that is capable 
of being judged true or false. There are many 
types of statements that do not concern us in 
the study of logic. The explicative “Hey 
you!” is one such statement. Note that the 
genus at this point is the term “statement” 
and the species is the term “proposition.” 

2. Predicates something by asserting or denying 
it. Thus, the statement “Hay is for horses” is 
a proposition, but the statement, “Hey you!” 
is not. 

3. Is capable of being true or false, thereby  
allowing us to judge or assert that truth or  
falsity. Thus, the statement “Pink elephants 
sing pretty songs” is not a proposition since 
its truth or falsity cannot be strictly judged. 

 
Three types of propositions are used in logic: 
 

1. CategoricalAll Greeks are philosophers. 
2. HypotheticalIf he/she is a Greek, then 

he/she is a philosopher.  
3. DisjunctiveEither Aristotle is a Greek or 

Aristotle is not a philosopher. 
 
Note: In continuing the process of definition, the 
genus has now become “propositions” and the spe-
cies, “categorical,” “hypothetical,” and “disjunctive.” 
 The propositions of classical Aristotelian logic are 
categorical and consist of a subject term and a predi-
cate term connected by the copula is. The predicate 
affirms or denies something about the subject. If S 
stands for subject and P stands for predicate, the 
general categorical schema is 
 

Some or all is or is notS P 41b g  
 
 We have already seen that a hypothetical proposi-
tion consists of an antecedent (hypothesis) and a  
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consequent (conclusion) connected by the copula 
If…then… . If these terms are represented respec-
tively as H and C, the general hypothetical schema is 
 

If , then .H C 42b g  
 
The disjunctive proposition consists of two disjuncts 
connected by the copula  Either…or… . If P and Q 
are the disjuncts, the general disjunctive schema is 
 

Either or .P Q 43b g 
 
 
Categorical Propositions 
 
 Now that we have some of the definitions and 
concepts in hand, we can advance farther in our study 
of Aristotle’s logic. Before doing so, we must state 
the obvious: To talk about something, we must have 
something to talk about. (This type of statement is 
called a tautology. Another example of a tautology is 
a mathematical theorem.) In this section, we will 
explore the relation of language in general and propo-
sitions in particular to the world at large. Recall that a 
categorical proposition is a proposition that consists 
of a subject term and a predicate term connected by 
the copula is. 
 Subject and substance.In Aristotelian6 logic, a 
subject is the term about which something is to be 
predicated. Whatever is subject in a categorical 
proposition is also substance, that which exists in the 
world. The term “subject” refers to language; the 
term “substance” refers to the stuff of the real world. 
Thus, a categorical proposition is a statement (propo-
sition) about the world at large. 
 We may read in Aristotle and in Aquinas of “sub-
stance” and “form.” For Aristotle, substance is the 
highest reality and is composed of formed matter; 
conversely, matter is the raw material which, when 
formed, becomes substance. 
 Form cannot exist without matter, and matter can-
not exist without form. Prime matter (prima materia 
or formless matter) is an abstraction, a passive, undif-
ferentiated potentiality, capable of becoming any-

                                                 
6The material in these sections represents no more than an intro-
duction to Aristotelian thought. The author hopes that students 
will further investigate the subject on their own. Although Aris-
totle is often denigrated in modern classrooms, it must be remem-
bered that he has much to teach us and we own him a great deal 
of respect. 

thing, awaiting determination. Similarly, matterless 
form by itself (c.f., Plato’s ideal forms) is a similar 
abstraction. 
  Although these concepts may seem antiquated, they 
are still in modern usage as reflected by terms such as 
quintessential, potential, and actualization. For exam-
ple, consider the use of the word “potential” in such 
terms as “potential energy,” “vector potential,” and 
“scalar potential.” Potential in physics is a formless 
something that underlies an important aspect of the 
physical world. Potential energy is capable of becom-
ing kinetic energy in a mechanical system. The vector 
and scalar potentials in electromagnetic theory are the 
driving functions in d’Alembert’s general equations 
of the electromagnetic field and give rise to the actual 
field quantities. 
 Essence and existence.We speak of the sub-
stance of an argument or a situation. In a common 
cliché, “the sum and substance of …,” substance is 
the “bird in hand” of a given argument. Perhaps it 
would be better to say “The something in hand.” 
However, with something in hand, we are then com-
pelled to identify exactly what it is that we have. 
After all, bug substance is different from rock sub-
stance or vegetable substance. Whatever the some-
thing in hand, it is referred to by the general term 
“essence.” We often speak of the essence of an argu-
ment; that is, what the speaker is really trying to say. 
According to Aristotle, the essence of a thing is that 
set of qualities by which the thing is what it is.  
Essence comprises a unique set of properties that 
every member of a species must possess to belong to 
that species and to no other. 
 Being or “existence” is also a quality of the some-
thing in hand. The concept of being has always chal-
lenged philosophers and continues to do so today. 
H.G. Wells asked in his novel The Time Machine, 
“Can an instantaneous cube exist? I mean, a cube that 
lasts for no time at all?” In other words, can nothing 
be imagined? The answer is “hardly,” since nothing 
itself is represented by something; it is represented by 
the term “nothing,” which has a very real existence. 
 Aristotle attempted to comprehend existence. He 
associated existence with substance. He argued that 
neither form by itself nor matter by itself has exis-
tence except as an abstraction or an idea; only when 
form and matter combine in substance does some-
thing come into being. So potential is actualized in 
substance (formed matter) which represents some-
thing specificessenceand has being; that is, it 
exists in the world. 
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 Propositions deal with the things of the world. 
Therefore, they deal with substance, form, essence, 
and existence; propositions are statements about these 
qualities. When studying categorical propositions, 
recall the existential quantifier ∃, which means “there 
exists.” Modern logic is also concerned with exis-
tence, although in a slightly different way. 
 Predication.When something exists, we are able 
to say something about itto “predicate” something 
about it. Every subject has qualities of interest. The 
grammatical form that relates to these qualities is 
called the predicate. In categorical propositions, we 
use the simple grammatical form “a is b” with some 
variations. Recall that a proposition is a specific type 
of statement that asserts or denies (predicates) some-
thing and is capable of being judged true or false. The 
five types of predicates are 
 

1. Genusa universal class that may be parti-
tioned into various equivalence subclasses 
called species (e.g., tree). 

2. Differentiaa characteristic or set of charac-
teristics that identify the members of a par-
ticular species as belonging to that species 
and to no other (e.g., oak). 

3. Speciesdifferentia and genus taken together 
(e.g., oak tree). 

4. Propertya necessary attribute of any mem-
ber of a species (e.g., ability to produce 
acorns). 

5. Accidenta contingent attribute of any 
member of a species (e.g., a large oak tree). 

 
Table 5 summarizes the five predicate types. 
 

TABLE 5.TYPES OF PREDICATES 
Type Example 

Genus Tree 
Differentia Oak 
Species Oak tree 
Property Ability to produce acorns 
Accident Size (large or small) 

 
 Let us continue to analyze the concept of predica-
tion to learn more about its characteristics. Each type 
of predicate is either necessary or contingent. Neces-
sary refers to that which stands alone and may not be 
otherwise, whereas contingent refers to that which is 
dependent on something else and may be otherwise. 

 The opposite of any contingent is another contin-
gent.  If we were to say, “This leaf is not red; this leaf 
is green,” the reference would be to the color of the 
leaf, a contingent quality. Leaf color is contingent on 
the time of the year the leaf is observed, on the color 
of the light under which it is observed, on the type of 
tree or plant that produces the leaf, even on whether 
or not the observer is color blind (think about the 
definition of color). Contingent qualities are some-
times referred to as “accidental qualities” or  
“accidents.” 
 The opposite of the necessary is the impossible. If 
one were to say, “This oak tree produces acorns; this 
oak tree produces no acorns,” the reference would be 
to the acorn-producing propensity of oak trees. For an 
oak tree, the production of acorns is a necessary 
quality, intrinsic to the tree and to its being an oak. 
There is nothing contingent or accidental about it. 
The oak tree that produces no acorns is either not an 
oak at all or is dead, in which case it is not strictly an 
oak tree either (assuming that when we name a tree, 
we are naming a living entity and not some hollowed 
out hull). 
 Another way to analyze predication is to consider the 
internal qualities of the predicate: what it is versus 
what its external qualities are (i.e., how it pertains to 
the world at large). In this type of analysis, one speaks 
of the characteristics of intension and extension.  
 The intension (also called the comprehension or 
connotation) of a term entails those characteristics 
present in the definition of the term itself. Consider the 
categorical proposition “A vector is a line segment 
with length and direction.” The intension of “vector” is 
“line segment with length and direction.” 
 The extension (also called the denotation) of a term 
entails that set of objects to which the term refers. 
Consider the categorical proposition “Field quantities 
in physics are vectors.” The particular extension of 
“vector” used here is “field quantities in physics.” 
 Intension and extension are related in that the inten-
sion of a term determines its extension, and the exten-
sion of a term determines its intension. 
 Words: univocal, equivocal, analogical. 
Categorical propositions consist of terms that are 
usually wordslanguage. Because words play an 
integral role in propositions, let us examine how words 
function in other language structures, such as puns. 
 Words may be classified as univocal, equivocal, and 
analogical. A word is univocal when it has the same 
meaning in all its various uses. For example, the word 
“bird” is univocal as are the words “dog” and “man.” 
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 A word is equivocal when it has more than one 
meaning depending on its use. For example, the word 
“bark” is equivocal as in the bark of a tree, the bark 
of a dog, or a bark (type of boat). Equivocation is 
involved when one observes the play on words in the 
simile “Time flies like an arrow” or in the statement 
“Fruit flies like a banana.” 
 A word is analogical when it is used for something 
it is not but suggests something to which it bears 
some similarity. For example, the word “lady” is 
analogical when it is used to refer to a boat. 
 Immediate inference.Now that the building 
blocks of Aristotelian logic have been surveyed, we 
are ready to put the blocks together and build the 
structure. In the section Basics of Hypothetical Logic, 
the three basic laws of thought were introduced. 
These laws are so fundamental and apparently self-
evident that they are taken as universally true. There-
fore, they are restated for reference:  
 

1.   Law of identityAny statement is equiva- 
  lent to itself. 

2.   Law of the excluded middleEither a  
  statement is true, or it is false. There is no  
  middle ground. 

3.   Law of contradictionA statement and its  
  negation cannot both be true at the same 
  time and place. 

 
 We now consider immediate inference in its classi-
cal or Aristotelian form. In the section Basics of 
Hypothetical Logic, the existential quantifiers ∀ and 
∃ were introduced: “For all” and “There exists…such 
that…” These quantifiers also appear here with only 
small modification. 
 Categorical propositions involving the quantifier ∀ 
have two expressions or moods. In hypothetical logic, 
we wrote ∀p, q, which states that “For all p, q is 
true.” The two moods of this quantifier in Aristotelian 
logic are designated by the Roman letters A and E: 
 
 A: All S are P. 
 E: No S are P. 
 
where S is the subject and P is the predicate. 
 The mood A is called the universal affirmative and 
the mood E, the universal negative. Again, in hypo-
thetical logic, we wrote, ∃p ∋ q, which means “There 
exists at least one p such that q is true.” The two 
moods of this quantifier in Aristotelian logic are desig-
nated by the Roman letters I and O: 

 
 I: Some S are P 
 O: Some S are not P 
 
 The mood I is called the particular affirmation and 
the mood O, the particular negation. The four moods 
are summarized in table 6: 
 

TABLE 6.MOODSa OF 
CATEGORICAL PROPOSITIONS 

Proposition Mood 
A: All S are P. Universal affirmation 
E: No S are P. Universal negative 
I: Some S are P. Particular affirmation 
O: Some S are not P. Particular negative 
 aIn some texts, “type” is the same as “mood.” 

 
 The relationships between the four moods is illus-
trated and illuminated in diagrammatic form using a 
device called the square of opposition. The square of 
opposition introduces new terminology: contraries, 
contradictories, subcontraries, and subalternates and 
superalternates. The notation of hypothetical logic is 
used to define these terms: 
 

1. Contraries∀S, P and ∀S, ~P 
2. Contradictories∀S, P and ∃S ∋ ~P or ∀S, 

~P and ∃S ∋ P 
3. Subcontraries∃S ∋ P and ∃S ∋ ~P 
4. Subalternates or superalternates∀S, P and 

∃S ∋ P or ∀S, ~P and ∃S ∋ ~P 
 
These same relationships are more easily compre-
hended when represented in the square of opposition 
(fig. 1): 
 This diagram is worth committing to memory  
because it provides an easy and quick way to compare 
statements made during a discussion or an argument. 
Specifically, if one of the four moods arises and is 
asserted to be true or false, the truth or falsity of the 
other three moods can be readily determined. 
 In the square of opposition, if the truth or falsity of 
each of the four moods of categorical propositions is 
assumed individually, then the remaining moods are 
either true, false, or undetermined. For example, if I is 
true, then E must be false, but A and O are undeter-
mined. The truth of I tells us that some S are P. Thus, 
we know that the proposition “No S are P” must be 
false. Whether all S are P or some S are not P cannot 
be determined from I taken alone. 
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Contraries

Contradictories

Subcontraries

A:  All S are P.

I:  Some S are P.

Subalternates/
superalternates

E:  No S are P.

O:  Some S are not P.

Subalternates/
superalternates

Figure 1.—Square of opposition.  
 
 

TABLE 7.INFERENCES DERIVED FROM ASSERTING THE TRUTH OR 
FALSITY OF A PARTICULAR CATEGORICAL PROPOSITION 

Propositiona Inference 
If A is true  E is false I is true O is false 
If E is true A is false I is false O is true 
If I is true A is undetermined E is false O is undetermined 
If O is true A is false E is undetermined I is undetermined 
If A is false E is undetermined I is undetermined O is true 
If E is false A is undetermined I is true O is undetermined 
If I is false A is false E is true O is true 
If O is false A is true E is false I is true 
aA, universal affirmation; E, universal negative; I, particular affirmation; O,  
particular negative. 

 
 
 
Table 7 summarizes all the possibilities for the four 
moods when A, E, I, and O are taken individually to 
be true or false. A mood and its truth or falsity is 
selected from the left-hand column and the remaining 
moods are determined by reading across. 
 Converse, obverse, contrapositive, and inverse of 
categorical propositions.As with predication, the 
concept of immediate categorical propositions can be 
analyzed in different ways to illuminate their differ-
ent characteristics. In this section, we will examine 
what happens when a given proposition is inter-
changed and/or its terms are negated in various ways. 
 In the section Basics of Hypothetical Logic, we 
encountered the concept of a statement and its con-
trapositive. Recall that given the proposition 
 
 
 
 

 
 A implies B 
 
the contrapositive proposition is 
 
  ~B implies ~A. 
 
The truth of one of these propositions is equivalent to 
the truth of the other. 
 Note that in this particular case, the terms A and B 
were interchanged (their roles as hypothesis and 
conclusion were switched) while at the same time 
each was negated. What would happen if these 
changes were made in different ways? Logicians have 
examined this question and have determined that 
given a proposition, there are four variants that are 
worth mentioning: 
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TABLE 8.CONVERSE, OBVERSE, CONTRAPOSITIVE, AND INVERSE OF CATEGORICAL PROPOSITIONS 

Propositiona Converse Obverse Contrapositive Inverse 
A: All S are P. I: Some P are S. E: No S are non-P. A: All non-P are non-S. Full: Some non-S are non-P. 
    Partial: Some non-S are 
     not P. 
E: No S are P. E: No P are S. A: All S are non-P. O: All non-P are not non-S. Full: Some non-S are not  

    non-P. 
     Partial: Some non-S are P. 
I: Some S are P. I: Some P are S. O: Some S are not non-P. Undetermined Undetermined 
O: Some S are not P. Undetermined I: Some S are non-P. O: Some non-P are not non-S. Undetermined 
aA, universal affirmation; E, universal negative; I, particular affirmation; O, particular negative. 

 
 
 

1. The original proposition: A ⇒ B 
2. The converse: B ⇒ A (the terms are simply 

interchanged) 
3. The obverse: ~(A ⇒ ~B) (The conclusion is 

first negated then the result is negated) 
4. The contrapositive: ~B ⇒ ~A 
5. The inverse: ~A ⇒ ~B (the terms are negated 

without changing places) 
 
Evidently, given that A ⇒ B is true, then the obverse 
and the contrapositive are also true, but the converse 
and the inverse are undetermined. In Aristotelian 
logic, these same relationships are defined for the 
four moods in table 8: 
 
Categorical Syllogisms  
 
 Mediate inference.Now let us examine categori-
cal propositions in mediate inference. Recall that 
syllogisms are arguments that consist of three cate-
gorical propositions. Two of these propositions are 
called premises; the third is called the conclusion. 
Each premise may be an A, E, I, or O categorical 
proposition. Syllogisms also contain three terms: a 
subject, a middle, and a predicate. The middle term 
occurs in both premises. The subject occurs in one 
premise and in the conclusion. The predicate occurs 
in the other premise and the conclusion.  
 In the syllogism, “All dogs have four legs; Fluff is a 
dog; therefore, Fluff has four legs,” “dog” is the mid-
dle term, “having four legs” is the predicate, and 
“Fluff” is the subject. The first two statements are  
 

 
premises (the first is an A categorical proposition,  
and the second is an I categorical proposition), and  
the third is the conclusion, also an I categorical  
proposition. 
 The premises in a syllogism are distinguished by 
the terms “major” and “minor.” The major premise 
contains the predicate and the middle terms. The 
minor premise contains the subject and the middle 
terms. The conclusion contains the subject and the 
predicate terms. Table 9 illustrates the foregoing 
example. 
 

TABLE 9.PREMISES OF A SYLLOGISM 
    Premise Categorical proposition 

Major All dogs have four legs. 
Minor Fluff is a dog. 
Conclusion Therefore, Fluff has four legs 

 
 Four figures of a syllogism.Obviously, the 
subject, middle term, and predicate can occur in 
different orders in different propositions. When these 
variations are taken into account, four distinct figures 
appear for categorical syllogisms. These figures are 
most easily seen when presented in table 4, which is 
repeated here for this discussion. These figures are 
the columns labeled first through fourth. The first row 
in each column shows the premise and the placement 
of the middle term (M), the predicate (P), and the 
subject (S), respectively. The second row in each 
column gives the conclusion, which is the same in all 
four figures as it must be by definition. 
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TABLE 4.THE FOUR FIGURES 

Propositiona Figure 
 First Second Third Fourth 

Premises MP and SM PM and SM MP and MS PM and MS 

Conclusion Therefore SP Therefore SP Therefore SP Therefore SP 
aS, subject term; P, predicate term; M, middle term. 

 
 
 
Each categorical syllogism can be classified into one 
of these four figures. 
 Four categorical moods.Since each proposition 
in a categorical syllogism can be of mood A, E, I, or 
O, it follows that there are many variants of categori-
cal propositions. To classify these variants, we must 
know the role of the various terms in the propositions. 
For example, in the proposition “All Greeks are phi-
losophers,” it is clear that the set of all Greeks is a 
subset of all philosophers. A non-Greek philosopher 
is possible in light of this premise, but not a non-
philosophical Greek. In the proposition, “Some 
Greeks are philosophers,” it is at least implied that 
some Greeks are nonphilosophers. This second 
proposition is somewhat weaker than the first. Thus, 
the “inclusive” role played by the various terms in a 
proposition is classified under the name “distribu-
tion.” In the proposition “All Greeks are philoso-
phers,” we say that the term “Greeks” is distributed 
since a nonphilosophical Greek is not permitted. In 
other words, to be Greek is to be philosophical. The 
term “philosopher,” on the other hand, is not distrib-
uted since to be philosophical is not necessarily to be 
Greek. This may seem confusing at first, but thinking 
about it for a while will make it clearer. 
 Distribution of terms in the four categorical 
moods.Venn diagrams are a useful way to think 
about distribution. In fact, since a distributed term is 
any term for which the proposition conveys informa-
tion about every member of a class, Venn diagrams 
provide a direct method for determining the distribu-
tion of a term. The following steps describe the con-
struction of a Venn diagram: 
 

1.  Use only the terms given in the proposition. 
2.  When the diagram is complete, the term that is 

contained is distributed; the term that contains is 
undistributed. (If neither contains nor is contained, 
then both are undistributed.) 

 

3.  If a given term is distributed, its negation is 
undistributed, or if a given term is undistributed, its 
negation is distributed. 
 
Table 10 shows the distribution of terms in the four 
moods. Figure 2 shows the Venn diagrams corre-
sponding to these four moods. The distributions in the 
table should become clear once these diagrams are 
understood. 
 

TABLE 10.DISTRIBUTION OF TERMSa  
IN FOUR CATEGORICAL MOODS 

Categorical mooda b Distribution 
A: All S are P. 
 

The subject term is distributed; the 
 predicate term is undistributed. 

E: No S are P. 
 

The subject and predicate terms 
 are both distributed. 

I: Some S are P. 
 

The subject and predicate terms 
 are both undistributed. 

O: Some S are not P. 
 

The subject term is undistributed; 
 the predicate term is distributed. 

aA, universal affirmation; E, universal negative; I, particular  
 affirmation; O, particular negative. 
bS, subject term; P, predicate term. 

 
 Rules for constructing a valid categorical syllo-
gism.The five classical rules for constructing a 
valid categorical syllogism follow: 
 

1.  The middle term must be distributed at least 
once. 

2.  No term may be distributed in the conclusion 
if it is not distributed in the premises. 

3.  If both premises are negative, there is no  
conclusion. 

4.  If one premise is negative, the conclusion 
must be negative. 

5.  If both premises are affirmative, the conclu-
sion must be affirmative. 
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All S are P.

No S are P.

Some S are P.

Some S are not P.

or

S

S

P

P

S P
S

P

or

S ~P
S

~P

S is distributed; P is undistributed.

S and P are both distributed (since S is contained
in ~P and P is contained in ~S).

S and P are undistributed (since one cannot
tell whether S � P or not).

S and ~P are undistributed (� P ⇔ ~~P is distributed).

Figure 2.—Venn diagrams showing distribution of terms in four
   categorical moods.  
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 Twenty-four valid syllogisms.The rules for con-
structing a valid syllogism can be used to form 24 
valid combinations of moods for premises and con-
clusions. These 24 possibilities are subdivided into 
the 4 figures already described (see table 4). In table 
11, read the notation as follows: AAA ⇔ premise 1 is 
an A categorical proposition; premise 1 is an A cate-
gorical proposition; and premise 3 is an A categorical 
proposition. 
 

TABLE 11.TWENTY-FOUR VALID 
SYLLOGISMS  

[Four moods of categorical propositions: 
A, universal affirmation; E, universal 

negative; I, particular affirmation; 
O, particular negative.] 

Figure 
First Second Third Fourth 
AAA AEE AAI AAI 
AAI AEO AII AEE 
AII AOO EAO AEO 

EAE EAE EIO IAI 
EAO EAO IAI EAO 
EIO EIO OAO EIO 

 
 The following are some selected syllogisms for the 
student to ponder: 
 
First figure (SM, MP, therefore SP), AAA: 
 
 All fowl are birds. 
 All birds are vertebrates. 
 Therefore all fowl are vertebrates. 
 
First figure, EAE: 
 
 No birds are dogs. 
 All dogs are canine. 
 Therefore no birds are canine. 
 
Second figure (PM, SM, therefore SP), AOO: 
 
 All dogs bark, “woof, woof!” 
 Some mammals do not bark, “woof, woof!” 
 Some mammals are not dogs. 
 
Second figure, EIO: 
 
 No cats are pink. 
 Some fish are pink. 
 Some fishes are not cats. 

Third figure (MP, MS, therefore SP), AAI: 
 
 All people are bipedal. 
 All people eat breakfast. 
 Therefore, some breakfast eaters are people. 
 
Third figure, OAO: 
 
 Some butterflies are not green. 
 All butterflies have wings. 
 Therefore, some winged things are not green. 
 
Fourth figure (PM, MS, therefore, SP), AAI: 
 
 All snakes are crawling things. 
 All crawling things slither along the ground. 
 Some slithering things are snakes. 
 
Fourth figure, IAI: 
 
 Some whales are blue. 
 All blue things reflect blue light. 
 Therefore, some blue-light reflectors are whales. 
 
Remember, practice makes perfect. 
 
 
Concluding Remarks 
 
 The basics of logic have been introduced, but the 
challenge for the student is to become proficient in 
the various areas presented and then to move beyond. 
The only advice that I can offer is practice. Practice 
can help one to meet this challenge. In addition to the 
material presented in the present work, the student 
can use other sources. Of the many fine workbooks, 
some offer difficult problems and sometimes give 
their solutions. Also, many textbooks are available, 
but the student should be aware that they may spe-
cialize in small areas, such as mathematical proof, 
modal logic, and Boolean logic. A general text is 
probably best for the beginner. The student may also 
choose to evaluate news articles, or stories, or other 
writings of interest to determine how well the mate-
rial encountered daily adheres to the laws of logic. 
 
Glenn Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, February 11, 2004 
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